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Relationship between Symmetries and
Conservation Laws

A. H. Kara1 and F. M. Mahomed2,3

Received July 30, 1999

The fundamental relation between Lie–Bäcklund symmetry generators and
conservation laws of an arbitrary differential equation is derived without regard
to a Lagrangian formulation of the differential equation. This relation is used in
the construction of conservation laws for partial differential equations irrespective
of the knowledge or existence of a Lagrangian. The relation enables one to
associate symmetries to a given conservation law of a differential equation.
Applications of these results are illustrated for a range of examples.

1. INTRODUCTION

In her paper on symmetries and conservation laws, Emmy Noether
(1918) proved that, for Euler–Lagrange differential equations, to each Noether
symmetry associated with a Lagrangian there corresponds a conservation law
which can be determined explicitly by means of a formula. The relationship
between the components of the Noether conserved vector T and the Lie–
Bäcklund operator which generates a Noether symmetry that gives rise to T,
inter alia, was investigated in Ibragimov et al. (1998). The question then
naturally arises of whether a similar result applies to differential equations
that do not admit of a Lagrangian formulation. Indeed, it is well known that
there exist differential equations which are not derivable from a variational
principle, e.g., evolution-type equations (see, e.g., Anderson and Duchamp,
1984).
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In a recent paper on symmetries (local and nonlocal) and conservation
laws, Anco and Bluman (1996) derived an identity which does not depend
on the use of a Lagrangian and provides a correspondence between symmetries
and conservation laws for self-adjoint differential equations.

In this paper, we present the relationship between the components of a
conserved vector of an arbitrary differential equation and the Lie–Bäcklund
symmetry generator of the equation which is associated with the conserved
vector components. Some aspects of this result were first reported at the
Modern Group Analysis Conference in 1997 (Kara and Mahomed, 1999).
For differential equations with a small parameter, we have proved analogous
results and presented applications in Kara et al. (1999). A result that relates
symmetries and conservation laws has significant applications. First, in the
absence of a Lagrangian, the construction of a conservation law of a given
equation is generally attempted by means of the direct method. This involves
the expansion of the conservation law equation, subject to the differential
equation being satisfied, as a determining equation for the components of
the conserved vector. This approach was first used by Laplace (1798) (see
discussion in Anderson and Ibragimov, 1994, Chapter 6) in the derivation of
the components of the well-known Laplace or Laplace–Runge–Lenz vector
of the classical two-body Kepler problem. Our result presented here imposes
a natural symmetry condition which together with the direct method simplifies
the solution procedure for the determination of a conservation law. The method
given here provides a direct link between symmetries and conservation laws.
Second, the relationship between symmetry and conservation law given here
enables one to obtain the symmetry (or symmetries) associated with a given
conservation law. In the case of ordinary differential equations, this provides
for a double reduction of order (Kara et al., 1994). Third, special cases of
the result given here relating to a variational formulation can be used for the
construction of Lagrangians of partial differential equations (Ibragimov et
al., 1998).

Apart from the applications alluded to above, further examples are given
in Section 4 which amply illustrate our method.

We briefly outline the notation and pertinent results used in this work.
In this regard, the reader is referred to Anderson and Duchamp (1984). The
convention that repeated indices imply summation is used.

Let x 5 (x1, x2, . . . , xn) P Rn be the independent variable with coordinates
xi, and let u 5 (u1, u2, . . . , um) P Rm be the dependent variable with
coordinates ua. Furthermore, let p: Rn1m → Rn be the projection map
p(x, u) 5 x. Also, suppose that s: x , Rn → 8 , Rn1m is a smooth map
such that p + s 5 1x, where 1x is the identity map on x. The r-jet bundle
Jr(8) is given by the equivalence classes of sections of 8. The coordinates
on Jr(8) are denoted by (xi, ua, . . . , ua

i1...ir), where 1 # i1 # . . . #ir # n
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and ua
i1...ir corresponds to the partial derivatives of ua with respect to

x i1, . . . , x ir. The partial derivatives of u with respect to x are connected by
the operator of total differentiation

Di 5
­

­xi 1 ua
i

­

­ua 1 ua
ij

­

­ua
j

1 ??? , i 5 1, . . . , n

as

ua
i 5 Di (ua), ua

ij 5 Dj Di (ua), . . .

The collection of all first-order derivatives ua
i will be denoted by u(1). Similarly,

the collections of all higher order derivatives will be denoted by u(2), u(3),
. . . . The r-jet bundle on 8 will be written as Jr(8) 5 {(x, u, u(1), . . . , u(r))/
(x, u) P8}.

We now review the space of differential forms on Jr(8). To this end,
let Vr

k(8) be the vector space of differential k-forms on Jr(8) with differential
d. A smooth differential k-form on Jr(8) is given by

v 5 fi1i2...ik dxi1 ∧ dxi2 ∧ . . . ∧ dxik

where each component fi1i2...ik P Vr
0(8), i.e., fi1i2...ik 5 fi1i2...ik (x, u, u(1), . . . ,

u(r)). Note that for differential functions f P Vr
0(8),

Df 5 Dj f dx j (1.1)

where D is the total differential or the total exterior derivative. Moreover,
the total exterior derivative of v is Dv 5 Dfi1i2...ik ∧ dxi1 ∧ dxi2 ∧ . . . ∧
dxik and by invoking (1.1) one has

Dv 5 Dj fi1i2. . .ik dx j ∧ dxi1 ∧ dx i2 ∧ . . . ∧ dx ik

The total differential D has properties analogous to the algebraic properties
of the usual exterior derivative d:

D(v ∧ n) 5 Dv ∧ n 1 (21)k v ∧ Dn

for v a k-form and n an l-form and D(Dv) 5 0. Also, it is known that if
Dv 5 0, then v is a locally exact k-form, i.e., v 5 Dn for some (k21)-form
n (Anderson and Duchamp, 1980).

2. ACTION OF SYMMETRIES

Consider an rth-order system of partial differential equations of n inde-
pendent and m dependent variables,

Eb(x, u, u(1), . . . , u(r)) 5 0, b 5 1, . . . , m̃ (2.1)
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Definition 1. A conserved form of (2.1) is a differential (n 2 1)-form

v 5 T i(x, u, u(1), . . . , u(r21))1 ­

­xi  (dx1 ∧ . . . ∧ dxn)2 (2.2)

defined on Jr21(8) if

Dv 5 0 (2.3)

is satisfied on the surface given by (2.1).

Remark. When Definition 1 is satisfied, (2.3) is called a conservation
law for (2.1).

It is clear that (2.3) evaluated on the surface (2.1) implies

Di T i 5 0 (2.4)

on the surface given by (2.1), which is also referred to as a conservation law
of (2.1). The tuple T 5 (T 1, . . . , T n), T j P Vr21

0 (8), j 5 1, . . . , n, is called
a conserved vector of (3.1).

We now review some definitions and results relating to Euler–Lagrange,
Lie–Bäcklund, and Noether operators (Ibragimov, 1985; Ibragimov et al.,
1998, and references therein).

Let ! 5 øp
r50 Vr

0 for some p , `. Then ! is the universal space of
differential functions of finite orders.

Consider a Lie–Bäcklund operator given by the infinite formal sum

X 5 ji ­

­xi 1 ha ­

­ua 1 za
i

­

­ua
i

1 za
i1i2

­

­ua
i1i2

1 ??? (2.5)

where ji, ha P ! and the additional coefficients are determined uniquely by
the prolongation formulas

za
i1???is 5 Di1 . . . Dis(W

a) 1 jjua
ji1???is s 5 1, 2, . . . (2.6)

In (2.6), Wa is the Lie characteristic function defined by

Wa 5 ha 2 jjua
j (2.7)

Let us also mention that if X is a Lie–Bäcklund operator, v a k-form, and
n an l-form, then

X(v ∧ n) 5 X(v) ∧ n 1 v ∧ X(n)

Lie–Bäcklund operators X̃ and X are said to be equivalent if X 2 X̃ 5 liDi ,
li P !. If li 5 ji, then X̃ is called a canonical operator.
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A Lie–Bäcklund operator X is said to be a Noether symmetry generator
associated with a Lagrangian L P ! if there exists a vector B 5 (B1, . . . ,
Bn), Bi P !, such that

X(L) 1 LDi (ji) 5 Di (Bi) (2.8)

If in (2.8) Bi 5 0, i 5 1, . . . , n, then X is referred to as a strict Noether
symmetry generator associated with a Lagrangian L P !.

In view of the above discussions and definitions, the Noether theorem
(Noether, 1918) is formulated as follows.

The Noether Theorem (Noether, 1918). For any Noether symmetry gener-
ator X associated with a given Lagrangian L P !, there corresponds a vector
T 5 (T 1, . . . , T n), T i P !, defined by

T i 5 N i(L) 2 Bi, i 5 1, . . . , n (2.9)

which is a conserved vector of the Euler–Lagrange equations dL/dua 5 0,
a 5 1, . . . , m, where d/dua is the Euler–Lagrange operator given by

d
dua 5

­

­ua 1 o
s$1

(21)s Di1 ??? Dis

­

­ua
i1???is

, a 5 1, . . . , m (2.10)

and the Noether operator associated with X is

Ni 5 ji 1 Wa ­

­ua
i

1 o
s$1

Di1 ??? Dis(Wa)
­

­ua
ii1???is

, i 5 1, . . . , n

in which the Euler–Lagrange operators with respect to derivatives of ua are
obtained from (2.10) by replacing ua by the corresponding derivatives, e.g.,

d
dua

i
5

­

­ua
i

1 o
s$1

(21)sDj1 ??? Djs

­

­ua
ij1???js

,

i 5 1, . . . , n, a 5 1, . . . , m

3. INVARIANCE OF CONSERVED FORMS

We recall (Ibragimov et al., 1998) an important result relating a Noether
symmetry X and its corresponding conserved vector T 5 (T 1, . . . , T n), where,
the Ti satisfy (2.9).

Theorem 1 (Ibragimov et al., 1998). The components of the Noether
conserved vector T, given by (2.9), associated with the Lie–Bäcklund operator
X, which is a generator of a Noether symmetry, satisfy

X(T i) 1 Dk(jk)T i 2 T kDk(ji) 5 N i(Dk(Bk)) 1 BkDk(ji) 2Dk(jk)Bi 2 X(Bi),

i 5 1, . . . , n (3.1)
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In Ibragimov et al. (1998) it was proved, inter alia, that any Noether symmetry
is equivalent to a strict Noether symmetry. Precisely, one can state the follow-
ing theorem:

Theorem 2 (Ibragimov et al., 1998). If a Lie–Bäcklund operator X
satisfies (2.8), then its equivalent operator

X̃ 5 X 2
1
L

BiDi 5 1ji 2
1
L

Bi2 ­

­xi 1 1ha 2
1
L

Biua
i 2 ­

­ua 1 ???

satisfies

X̃L 1 LDij̃i 5 0

where j̃i 5 ji 2 (1/L)Bi for i 5 1, . . . , n.
Consequently, (3.1) in Theorem 1 can be written independently of Bi

and N i, i.e., we have the result

X(T i) 1 T iDk(jk) 2 T kDk(ji) 5 0, i 5 1, . . . , n (3.2)

The relation (3.2) connects a Noether symmetry generator to components of
a conserved vector given by (2.9). It should be borne in mind that (3.2) is
deduced from a Lagrangian formulation. The question is whether the result
(3.2) holds without regard to the knowledge or existence of a Lagrangian of
a given differential equation. The answer is provided by the main theorem
proved below.

We first state the following definition, which gives meaning to the
invariance of a differential form under a Lie–Bäcklund group (see Anderson
and Ibragimov, 1995, 1996, for accounts on these groups).

Definition 2. The differential k-form v 5 fi1i2...ik (x, u, u(1), . . . , u(r))
dxi1 ∧ . . . ∧ dxik is called an invariant form of order k with respect to the
Lie–Bäcklund transformation group xi 5 exp(eX )(xi), ua 5 exp(eX )(ua),
ua

i 5 exp(eX )(ua
i ), . . . , i 5 1, . . . , n, a 5 1, . . . , m, on !, where e is the

group parameter, exp(eX ) 5 1 1 eX 1 (e2/2!)X 2 1 (e3/3!)X 3 1 ???, and X
is the Lie–Bäcklund operator (2.5), if

fi1i2???ik(x, u, u(1), . . . , u(r))dxi1 ∧ . . . ∧ dx ik

5 fi1i2???ik(x, u, u(1), . . . , u(r)) dxi1 ∧ . . . ∧ dxik

The following lemma is also used in the main theorem.

Lemma. The differential form v 5 fi1i2???ik(x, u, u(1), . . . , u(r)) dxi1

∧ . . . ∧ dxik is an invariant form of the Lie–Bäcklund group with generator
X if and only if
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X(v) 5 0

Proof. We utilize Definition 2. Also we write v to indicate that v is in
terms of the transformed quantities. Thus, by using the infinitesimal form of
the Lie–Bäcklund group and the Taylor expansion, it is not difficult to
deduce that

v5 fi1i2???ik(x, u, u(1), . . . , u(r)) dxi1 ∧ . . . ∧ dx ik

5 [ fi1i2. . .ik 1 eX( fi1i2. . .ik)] d(xi1 1 eji1) ∧ . . . ∧ d(xik 1 ejik) 1 O(e2)

5 v 1 eX(v) 1 O(e2)

Hence if v 5 v, then X(v) 5 0 for e small. For the converse, suppose that
X(v) 5 0. Then X(v) 5 0. Now (d/de)v 5 X(v) is zero. Thus v is constant,
which in turn, using the identity property of the group, implies that v 5 v.

Main Theorem. Suppose that X is a Lie–Bäcklund operator (2.5) such
that the form v given by (2.2) is invariant under X. Then

X(T i) 1 T iDk(jk) 2 T kDk(ji) 5 0, i 5 1, . . . , n (3.3)

Proof. Let us now write the (n 2 1)-form (2.2) as

v 5 T ik
­

­xik
 (dxi1 ∧ . . . ∧ dxin) (3.4)

Therefore,

X(v) 5 X(T ik)
­

­xik
 (dxi1 ∧ . . . ∧ dxin)

1 T ik(21)k21X (dxi1 ∧ . . .
∧

∧ dx ik ∧ . . . ∧ dxin)

5 X(T ik)
­

­xik
 (dxi1 ∧ . . . ∧ dxin)

1 T ik(21)k 21 o
n

l51,lÞk
(dxi1 ∧ . . .

∧

∧ dx ik ∧ . . . ∧ dxil 21

∧ Djil ∧ dxil 11 ∧ . . . ∧ dxin)

where the caret denotes omission. Since for fixed l, Djil 5 Dikj
il dxik by (1.1),

we have

X(v) 5 X(T ik)
­

­xik
 (dxi1 ∧ . . . ∧ dxin)

1 T ik(21)k21H o
n

l51,lÞik

Dilj
il(dxi1 ∧ . . .

∧

∧ dx ik ∧



30 Kara and Mahomed

. . . ∧ dxil 21 ∧ dxil ∧ dxil11 ∧ . . . ∧ dxin)

1 Dikj
il(dxi1 ∧ . . .

∧

∧ dx ik ∧ . . . ∧ dxil 21 ∧ dxik ∧ dxil 11 ∧ . . . ∧ dxin)}

5 X(Tik)
­

­xik
 (dxi1 ∧ . . . ∧ dxin) 1 T ik Dilj

il
­

­xik
 (dxi1 ∧ . . . ∧ dxin)

2 TilDilj
ik

­

­xik
 (dxi1 ∧ . . . ∧ dxin)

Thus, X(v) 5 0 gives

X(T ik) 1 T ikDil(j
il) 2 T ilDil(j

ik) 5 0, k 5 1, . . . , n

which is (3.3).
The implications of this result on differential equations are important

and given in the following definition.

Definition 3. A Lie–Bäcklund symmetry generator X is said to be associ-
ated with a conserved vector T (or its corresponding conserved form v) of
the system (3.1) if X and T satisfy the relations (4.3) [or equivalently if
X(v) 5 0].

Corollary 1. Suppose that X is a canonical Lie–Bäcklund symmetry
generator of the system (2.1) such that the conserved form v of (2.1), given
by (2.2), is invariant under X. Then

X(T i) 5 0, i 5 1, . . . , n (3.5)

In the following corollary, we discuss the above result for a system of
ordinary differential equations (one independent variable x).

Corollary 2. Suppose that X is a Lie–Bäcklund symmetry generator of a
system of ordinary differential equations and X is associated with a conserved
quantity T. Then X is a symmetry generator of T, viz.

X(T ) 5 0 (3.6)

It is important to point out that the result X(T ) 5 0 in (3.6) has effectively
been applied before in the case of point symmetries to physically interesting
systems. The reader is referred to, e.g., Leach (1981).

4. APPLICATIONS

In this section we derive conservation laws for some well-known partial
differential equations of mathematical physics using our symmetry conditions
(3.3) together with the determining equation for the conservation law (2.4).
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In the first example, which admits of a Lagrangian formulation, we
compare the results obtained by our method with those obtained by Noether’s
theorem. The second example deals with Burger’s equation. We utilize the
direct method to construct conservation laws, as there is no Lagrangian for
this equation. The direct method does not provide a correspondence between
symmetries and conservation laws. Hence we invoke our method to provide
this link. In Example 3 we utilize our method, viz. we invoke the dual
conditions (3.3) and (2.4) to find conservation laws which are associated
with a single symmetry for each example. In Example 5 we look at the
alternate problem of knowing a conservation law and finding the symmetries
associated with it.

Example 1. The equation

uxt 1 ux 1 u2 5 0 (4.1)

which arises in the study of Maxwellian tails, admits a four-dimensional Lie
algebra of point symmetry generators (Euler et al., 1988). One of them (in
extended form) is

X 5 et ­

­t
2 uet ­

­u
2 (uet 1 2utet)

­

­ut
2 uxet ­

­ux

We construct a conserved vector T 5 (T 1, T 2) which has associated with it
the symmetry generator X given above. This is done by invoking our result
(3.3) together with the condition for the conservation law (2.4) for (4.1). The
determining equation for the components and T 1 and T 2, using the direct
approach, is

(DtT 1 1 DxT 2).(4.1) 5 0

Splitting with respect to utt and uxx gives that T 1 and T 2 are independent of
ut and ux , respectively. The remaining part of the determining equation
becomes (we have replaced uxt by 2ux 2 u2)

­T 1

­t
1

­T 1

­u
ut 1

­T 1

­ux
(2u2 2 ux) 1

­T 2

­x
1

­T 2

­u
ux 1

­T 2

­ut
(2u2 2 ux) 5 0

(4.2)

We now impose the symmetry conditions (3.3) with the above X, which are

X(T 1) 5 0, X(T 2) 1 etT 2 5 0
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This yields

­T 1

­t
2

­T 1

­u
u 2

­T 1

­ux
ux 5 0,

­T 2

­t
2

­T 2

­u
u 2 (2ut 1 u)

­T 2

­ut
1 T 2 5 0

(4.3)

The solution of equation (4.3) gives

T 1 5 f 1(a, a, b), T 2 5 uf 2(a, a, g) (4.4)

where the f i are functions of a 5 x, a 5 uet, b 5 ux /u, and g 5 ute2t 1
ue2t. The substitution of (4.4) into (4.2) results in the linear equation

ag
­f 1

­a
2 (a2 1 bg)

­f 1

­b
1 a2bf 2 1 a2 ­f 2

­a
1 a3b

­f 2

­a
2 a4 ­f 2

­g
5 0

Since we have the functions f 1(a, a, b) and f 2(a, a, g), we can easily obtain
a solution of the above equation by differentiation twice with respect to g
and separation with respect to b. This gives

a2f 2 1 a3 ­f 2

­a
5 A1g 1 B1, a2 ­f 2

­a
2 a4 ­f 2

­g
5 A2g 1 B2

where the Ai and Bi are functions of a and a. The substitution of these back
into the linear equation and a split with respect to g results in

a
­f 1

­a
2 b

­f 1

­b
5 2A1b 2 A2, 2 a2 ­f 1

­b
5 2B1b 2 B2

The solution of the above pair of equations yields

f 1 5
1
2

G1a2b2 1
b
a2 B2 1 C, f 2 5 2

g
a4 B2 1

1
3
G1a2 2

1
2

G2
g2

a
1

G3

a

where

2a
­C
­a

1
1
a2

­B2

­a
5 G2a3

and the Gi are constants. One can easily see that a solution is (set B2 5 G1

5 G3 5 0, C 5 a3/3, and G2 5 21) f 1 5 1/3a3, f 2 5 g2/(2a). Then T 1 and
T 2 are

T 1 5
1
3

u3 e3t, T 2 5
1
2

e3t(u 1 ut)2

which constitute a nontrivial conservation law associated with X given above.
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Another conservation law (not equivalent to the first one) associated
with X corresponds to (set G1 5 1 and the rest of the terms zero)

T 1 5
1
2

e2tu2
x, T 2 5

1
3

e2tu3

We see here that there could arise more than one conservation law associated
with a given symmetry.

Consider next the scaling symmetry generator

X 5 x
­

­x
2 u

­

­u
2 ut

­

­ut
2 2ux

­

­ux

which is admitted by (4.1) (Euler et al., 1988). The symmetry conditions
(3.3) on T 1 and T 2 are

X(T 1) 1 T 1 5 0, X(T 2) 5 0

The resulting solutions of these give

T 1x 5 f 1(a, a, b, g), T 2 5 f 2(a, a, b, g)

where a 5 t, a 5 xu, b 5 xut , and g 5 x2 ux. Since T 1 and T 2 are independent
of ut and ux , respectively (this is a consequence of the determining equation
for the conserved components given above), T 1 is independent of b and T 2

of g. The condition (4.2) then implies the linear equation

­f 1

­a
1 b

­f 1

­a
2 (a2 1 g)

­f 1

­g
1 a

­f 2

­a
1 b

­f 2

­b
1 g

­f 2

­a
2 (a2 1 g)

­f 2

­b
5 0

By differentiation twice with respect to b and thereafter a split with respect
to g we obtain

­f 2

­a
2

­ f 2

­b
5 A1b 1 B1, a

­f 2

­a
1 (b 2 a2)

­f 2

­b
5 A2b 1 B2

where the Ai and Bi are functions of a and a. The insertion of the last pair
of equations into the linear equation gives the equations for f 1. The solution
of the equations in f 1 and f 2 gives trivial conservation law of (4.1).

The translation in x symmetry generated by X 5 ­/­x is admitted by
(4.1) and it is straightforward to obtain the conserved components associated
with X. The calculations are routine as before and we obtain

T 1 5
2
3

A1u3 e3t 1 2A1 e3t uux 1
1
2

A2 e2t u2
x 1 B

ux

u2,

T 2 5 A1 e3t u2
t 2 B

ut

u2 1 C
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where the Ai are constants and B(t,u) and C(t,u) satisfy ­B/­t 1
u2­C/­u 5 u4A2e2t 2 4u3A1e3t.

Equation (4.1) is in fact derivable from a variational principle and
one may obtain conservation laws via Noether’s theorem using, e.g., the
Lagrangian (Ibragimov et al., 1998, for a symmetry method for the construc-
tion of Lagrangians)

L 5 1–2 e2t(utux 1 u2ut)

The Noether point symmetry generators associated with this L are deduced
by invoking (2.8) with Bi 5 Bi (t, x, u), i 5 1, 2. One obtains three Noether
symmetry generators (or a linear combination thereof)

X1 5
­

­x
, X2 5 et ­

­t
2 uet ­

­u
2 (uet 1 2utet)

­

­ut
2 uxet ­

­ux

X3 5
­

­t
1 x

­

­x
2 u

­

­u
2 ut

­

­ut
2 2ux

­

­ux

and these constitute a subalgebra of the four-dimensional Lie algebra of point
symmetries of equation (4.1). The components B1 and B2 corresponding to
the Xi , i 5 1,2,3, are given by

B1 5 21–6 u3e3tdi2 1 b(t,x), B2 5 21–4 u2e3t di2 1 c(t, x), i 5 1, 2, 3

where b and c satisfy bt 1 cx 5 0. The Noether theorem gives rise to conserved
vectors for each of the Noether symmetry generators. They are, upon invoking
(2.9) (we have set b 5 c 5 0),

T 1 5 21–2u
2
xe2t 2 Dx(1–6u

3e2t), T 2 5 21–3u
3e2t 1 Dt(1–6u

3e2t)

T 1 5 21–3u
3e3t 2 Dx(1–4u

2e3t), T 2 5 2
1
2
e3t(ut 1 u)2 1 Dt(

1
4
u2e3t)

T 1 5 (u 1 xux)[1–2uxe2t 1 1–2u
2e2t], T 2 5 21–2xu2ute2t 1 1–2utue2t 1 1–2u

2
t e2t

The first two pairs yield conservation laws which are equivalent to what we
obtained before. Note that there is no scaling symmetry associated with this
Lagrangian. However, we have seen above that a scaling symmetry does not
give rise to a conservation law. There is no alternative Lagrangian for which
the scaling symmetry is a Noether symmetry. The Noether symmetry generator
X3 is a combination of scaling and a time translation and one obtains a
corresponding (Noether) conserved vector given by the third pair above.
However, the time-translation symmetry does not appear here as a Noether
symmetry for the L considered. The question is whether it results in a conser-
vation law. The answer can be provided by either looking for a Lagrangian
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for which ­/­t is a Noether symmetry generator (and hence a conservation
law results) or alternatively by invoking (3.3) and (2.4) using ­/­t. The last-
mentioned possibility gives a negative answer to this question. The calcula-
tions are straightforward as before. Thus there is no first-order conservation
law associated with the symmetry generator ­/­t.

In the next example, which does not have a Lagrangian, we use the
direct method to obtain a conservation law. Such a direct approach does not
give the relationship between symmetries and conservation laws. Thus we
need to invoke our symmetry conditions to determine the conservation laws
that have associated symmetries.

Example 2. We first employ the direct method to derive a conservation
law for Burger’s equation

ut 5 uxx 1 uux (4.5)

Thereafter we associate symmetries to the conservation law. The determining
equation for the components T 1 and T 2, using the direct approach, is
(DtT 1 1 DxT 2).(4.5) 5 0. The replacement of ut by uxx 1 uux and then expansion
and separation by utt, utx, and uxx gives

­T 1

­ut
5 0 ,

­T 1

­ux
1

­T 2

­ut
5 0 ,

­T 1

­u
1

­T 2

­ux
5 0 (4.6)

together with the remaining terms

­T 1

­t
1 uux

­T 1

­u
1

­T 2

­x
1 ux

­T 2

­u
5 0

The solution of the above linear equations is straightforward and yields

T 1 5 2a(t)ux 1 Au 1 b(t, x), (4.7)

T 2 5 a(t)ut 2 Aux 1 ȧu 2 1–2Au2 1 g(t, x)

where A is a constant and bt 1 gx 5 0. This conservation law is equivalent
to the obvious one with conserved vector (u, 1–2 u2 1 ux).

Equation (4.5) has five point symmetries (in extended form):

X1 5
­

­t
, X2 5

­

­x
, X3 5 t

­

­x
2

­

­u
2 ux

­

­ut

X4 5 2t
­

­t
1 x

­

­x
2 u

­

­u
2 3ut

­

­ut
2 2ux

­

­ux

X5 5 tx
­

­x
1 t2 ­

­t
2 (tu 1 x)

­

­u
2 (u 1 3tut 1 xux)

­

­ut
2 (1 1 2tux)

­

­ux
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We now invoke the symmetry condition (3.3) for each of the symmetries
above on the conserved components (4.7).

It is easy to deduce that X1(T 1) 5 X1(T 2) 5 0 imposed on (4.7) gives
T 1 5 2 aux 1 Au 1 b(x), T 2 5 aut 2 Aux 2 1–2 Au2. Without loss of generality,
we choose

T 1 5 u, T 2 5 2ux 2 1–2 u2 (4.8)

which has associated symmetry X1. Similarly for X2, one gets (4.8) up to
trivial terms.

The Galilean symmetry generated by X3 together with the symmetry
conditions on T 1 and T 2 of (4.7), viz.

X3(T 1) 5 0, X3(T 2) 2 T 1 5 0

results in (up to inconsequential trivial terms)

T 1 5 u 1 Dx 1x2

2t2, T 2 5 2ux 2
1
2

u2 2 Dt 1x2

2t2 (4.9)

Note that one still has terms in parentheses that give rise to a trivial conserva-
tion law. These terms play an important role in the Galilean symmetry associ-
ated with the conservation law (4.9). If T 1 and T 2 lack these terms, then X3

will no longer be associated with T 1 and T 2.
The scaling symmetry generated by X4 and the symmetry condition

on (4.7)

X4(T 1) 1 T 1 5 0, X4(T 2) 1 2T 2 5 0

give rise to

T 1 5 u 1 (2/x) h(x2/t), T 2 5 2ux 2 1–2 u2 1 (1/t) h(x2/t)

where h is a function of x2/t. Again the term containing h is the trivial term
without which one cannot associate X4 with the conservation law of (4.7).

There is no conservation law corresponding to (4.7) which has associated
with it the symmetry generated by X5. To see this, one proceeds by solving

X5(T 1) 1 tT 1 5 0, X5(T 2) 1 2tT 2 2 xT 1 5 0

for T 1 and T 2 given by (4.7).
In the following example, we employ our symmetry-based approach to

construct conservation laws for an equation that does not admit of a Lagran-
gian formulation. Here we invoke the dual conditions (2.4) and (3.3) simulta-
neously for one symmetry.

Example 3. One of the four Lie point symmetry generators admitted by
the Korteweg–de Vries equation
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ut 5 uxxx 1 uux (4.10)

is the Galilean operator with first prolongation

X 5 t
­

­x
2

­

­u
2 ux

­

­ut

It is worth noting that the Lie–Bäcklund algebra admitted by (4.10) is gener-
ated by X (Ibragimov, 1985). The determining equation for the conservation
law of (4.10) after replacing uxxx by ut 2 uux implies

­T 1

­utt
5 0,

­T 1

­utx
1

­T 2

­utt
5 0,

­T 1

­uxx
1

­T 2

­utx
5 0 (4.11)

together with the remaining terms. Also, the symmetry condition (3.3) on T 1

and T 2 is

X(T 1) 5 0, X(T 2) 2 T 1 5 0

The solution of these taking into account (4.11) gives

T 1 5 T 1 (a, b, c, a, b), T 2 5 2g
­T 1

­c
2 uT 1 1 h(a, b, c, a, b)

(4.12)

where a 5 t, b 5 ux , c 5 uxx, a 5 x 1 tu, b 5 ut 2 uux , and g 5 utx 2
2uuxx. The remaining terms in the determining equation become

­T 1

­a
1 ab

­T 1

­a
1 [utt 2 utux 2 2uutx 1 uu2

x 1 u2uxx]
­T 1

­b
1 (g 1 uuxx)

­T 1

­b

2g(1 1 ab)
­2T 1

­c­a
1 (1 1 ab)

­h
­a

1 g(u2
x 2 utx 1 uuxx)

­2T 1

­c­b

1 (2bc 1 ub)
­T 1

­c
1(g 2 b2 1 uuxx)

­h
­b

2 bT 1 2 gc
­2T 1

­b­c

1 c
­h
­b

2 bg
­2T 1

­c2 1 b
­h
­c

5 0

After some straightforward manipulations, the solution of this equation gives

T 1 5 ( p(a, a)a 1 D1a2 1 D2a 1 D3)b 1 p

T 2 5 2( pa 1 D1a2 1 D2a 1 D3)b 1 2D1ca 2 2bD1 (4.13)

2ab2D1 1 cD2 1 n (a, a) 2 uT 1

where p and n satisfy ­p/­a 1 ­n/­a 5 0 and the Di are constants. We
discuss two nonequivalent cases of (4.13).
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If p 5 a, n 5 0, D1 5 D3 5 0, and D2 5 1, then the components of
the conservation law for (4.10) are

T 1 5 (x 1 tu) (tux 1 ux 1 1), T 2 5 uxx 2 (x 1 tu) (tut 1 u 1 ut)

This gives rise to a conservation law which is equivalent to

Dt(xux 1 tuux) 1 Dx(2xut 2 tuut 1 uxx) 5 0

which in turn can be obtained by setting D2 5 1 and the rest of the terms zero.
Next we assume that D2 5 D3 5 0, D1 5 21/2, and p 5 a2/(2a). Then

T 1 5 xu 1
tu2

2
1

x2

2t
(4.14)

T 2 5 ux 1
1
2

tu2
x 2 xuxx 2 tuuxx 2

1
2

xu2 2
1
3

tu3 1
1
6

x3

t2

This is precisely (up to trivial terms) the components of the conservation
law given in Ibragimov (1985). In Ibragimov (1985), (4.14) was obtained
from a weak Lagrangian formulation. The components (4.14) and the
recursion operator of (4.10), viz., L 5 D2 1 2–3u 1 1–3ux D21, enable one to
determine all the conserved vectors of (4.10) (see discussion in Ibragimov,
1985).

In the next example we illustrate how one can find the point symmetries
associated with a conservation law.

Example 4. We determine the point symmetries associated with the
conserved components

T 1 5 xux 1 tuux , T 2 5 ux 2 xut 2 tuut (4.15)

of the Burgers equation. Clearly this gives rise to a conservation law equivalent
to Dt(2u) 1 Dx(u2/2 1 ux) 5 0 since T 1 5 2u 1 Dx(xu 1 1–2 tu2) and T 2 5
2u2/2 1 ux 2 Dt(xu 1 1–2 tu2).

The symmetry conditions on (4.15) are

X(T 1) 1 T 1 Dx(j2) 2 T 2 Dx(j1) 5 0, X(T 2) 1 T 2Dt(j1) 2 T 1 Dt(j2) 5 0

(4.16)

where X is the operator (2.5), viz.

X 5 j1 ­

­t
1 j2 ­

­x
1 h

­

­u
1 zt

­

­ut
1 zx

­

­ux

The expansion of the determining equations (4.16) and separation by monomi-
als of the first derivatives gives
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j1 5 22ta, j2 5 2bt 2 ax, h 5 au 1 b

where a and b are constants. Hence there are two symmetries associated with
T 1 and T 2 and their generators are

X1 5 t
­

­x
2

­

­u
2 ux

­

­ut
,

X2 5 2t
­

­t
1 x

­

­x
2 u

­

­u
2 3ut

­

­ut
2 2ux

­

­ux

Note that the symmetries associated with the conservation law given by (4.15)
and that with the equivalent one determined by (2u, u2/2 1 ux) are quite
different. The trivial conservation law plays an important role in the associa-
tion of symmetries to conservation laws.

5. DISCUSSION

The relations (3.3) and its consequences have important applications.
First, (3.3) could be utilized to obtain the symmetries X associated with a
given conserved vector T as illustrated in Section 4. In the case of ordinary
differential equations, this has been of interest (Kara et al., 1994) and provides
reduction procedures. Second, (3.3) with X known together with the conserva-
tion law Di T i 5 0 can be viewed as a system of linear partial differential
equations which can be solved for the components T i of the conserved vector
T. This aspect was investigated in Section 4 for some well-known partial
differential equations. However, in the literature the problem of constructing
a conserved vector is generally obtained by means of the direct method of
solving Di T i 5 0 for a given equation without recourse to symmetry properties
and usually involves ad hoc assumptions to simplify the solution procedure.
The conditions (3.3) added to Di T i 5 0, satisfied on the solutions of the
system under investigation, imposes natural symmetry conditions and the
resulting determination of the conserved vector T 5 (T 1, . . . , T n) becomes
simpler. Also the conditions (3.3) provide a relationship between symmetries
and conservation laws. Finally, there have been applications of special cases
of (3.3) involving the variational formulation of a differential equation in the
construction of a corresponding Lagrangian (Ibragimov et al., 1998).
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